Snowmass TDAQ Subgroup "Hello!"

Darin Acosta (Florida), <u>Wes Ketchum (FNAL)</u>, and Stephanie Majewski (Oregon)

Outline

- Overview of TDAQ challenges and topics of interest
- Planned TDAQ subgroup activities
- TDAQ subgroup communication

Who we are

Darin Acosta

- University of Florida, Department of Physics
- CMS experiment, Level-1 muon trigger, incoming Trigger co-coordinator

Wes Ketchum

- Fermilab, Scientific Computing Division
- MicroBooNE, SBN, and DUNE experiments, LArTPC DAQ and artdaq framework

Stephanie Majewski

- University of Oregon, Department of Physics
- ATLAS experiment, LAr calorimeter trigger electronics

Some previous collection of discussion

- European Strategy Physics Book (see Secs. 11.1 and 11.2):
 https://cds.cern.ch/record/2691414/files/Briefing_Book_Final.pdf
- CPAD 2018 Report (see Secs. 4.7, 4.10.5-7): https://arxiv.org/pdf/1908.00194.pdf
 - 2017 CPAD DAQ Workshop: https://indico.fnal.gov/event/14744/
- TDAQ Community Meeting for DOE Basic Research Needs (2019): https://agenda.hep.wisc.edu/event/1430/
- Please feel free to send us more!

TDAQ Challenges

Next generation of detectors places many challenges on Trigger and DAQ

- Large data throughput
- High reliability and performance in extreme environments
- Fast timing and precise synchronization, even across large distances

We should consider advances on many possible lines

- Novel improvements on existing technologies and techniques
- Exploring and advancing emerging technologies
- Integration of TDAQ requirements, capabilities, and possibilities, into R&D efforts across instrumentation frontier and future detector design

Some specific TDAQ topics of interest (1)

- Future experiments are growing in scale, and will generate data at 100s of TB/s in challenging environments
 - E.g. high radiation, magnetic fields, cold temperatures, severe limitations on space and power
- High-speed data links for future detectors
 - Improved rad-hard optical links, photonics-based links, and wireless readout among possible solutions, but all need R&D
- Real-time on-detector processing hardware
 - Low-power ADCs ready to meet demands of faster sampling and high resolution need orders of magnitude improvement
 - Need localized data reduction, processing, and aggregation: e.g. FPGAs and ASICs for 'low-level' compression/zero suppression and 'high-level' clustering and pattern-finding
 - Incorporating precise timing into readout and triggering for handle pileup, improved particle ID

Some specific TDAQ topics of interest (2)

- Needs for high-level triggering and monitoring of detectors are increasing with detector size and event complexity, requiring advanced computing
- Online processing and improved high-level trigger algorithms
 - Development of online and real-time algorithms that can make further use of heterogeneous computing (CPU, GPU, FPGA, etc.), and tools to make that possible (e.g. HLS)
 - Includes artificial intelligence/machine learning/neuromorphic computing algorithms and fast inference
- Autonomous systems for operation, calibration, and control
 - Anomaly detection, fault recovery, and automated calibration for detector stability and efficient
 DAQ will be critical for complex detectors and high uptime demands
 - Prime place to take advantage of Al/ML techniques to automate feedback

Some specific TDAQ topics of interest (3)

 Architecture of DAQ systems is evolving with needs of large detectors and improvements in readout electronics and computing

Precision synchronization

- Precise timing creates need for "picosecond synchronization of detector components for event/interaction disambiguation, phase coherence, and absolute time comparisons at km and greater scales
- Solutions for system-level architecture improvements in DAQ
 - "Streaming" and asynchronous readout components allow for more R&D in shared readout techniques and technologies (e.g. "computing-as-a-service" with well-defined latencies for high-level event filtering)

Some specific TDAQ topics of interest (4)

• And of course, your further ideas here!

Key overlap/shared concerns with other (sub)groups

- TDAQ necessarily takes as input the requirements of the detectors
 - Electronics/ASICs a key integration point, but systems-level understanding critical for making an experiment work
- TDAQ not only makes use of advancements in computing, but is a key driver for what the needs of offline computing are
 - Parallelized algorithms and machine learning critical to future online triggering algorithms
 - Balance the abilities of TDAQ with the abilities for offline computing, networking, and storage to keep up
- Of course, connections to all groups/frontiers critical for building the detectors, facilities, and communities to achieve our physics goals

TDAQ Subgroup Planned Activities

- Brief welcome call in early July
 - Gather TDAQ enthusiasts across HEP to find our community, elaborate our goals for this forum,
 and encourage collaboration and discussion
 - Likely ask for people to prepare brief "one-slide" on who they are and their interests, plans, and ideas
 - Discuss organization for future work to help our community
- Dedicated TDAQ virtual meeting in early August
 - Solicit brief presentations of LOI ideas to encourage feedback and collaboration
 - Following July meeting, organize session(s) for broader discussion of needs in TDAQ
 - Particularly "what's missing" from the presented ideas and plans

Communication

- We've been working on sending emails to collaborations/TDAQ enthusiasts across HEP
 - We need your help! Please don't hesitate to spread the word or encourage us to contact others:
 hopefully these slides are a good intro to share!
- Subscribe to our email list: SNOWMASS-IF-04-TDAQ@FNAL.GOV
- Slack channel: #if04-tdaq
- Wiki page: https://snowmass21.org/instrumentation/trigger
 - (which we will attempt to keep updated with important info...)

Backup

Some specific thrusts

- High-speed data links and transfers
- Real-time processing hardware
 - Heterogeneous (ASIC, FPGA, GPU, CPU)
- Architecture (triggered vs. streaming, synchronous vs. asynchronous, how our computing is distributed 'computing as a service')
- Online processing and improved high-level trigger algorithms
- Autonomous systems for operation, control, and calibration
- Precision timing for improved triggering and synchronization
- Make sure to get the difference in needs for different frontiers (high energy, neutrino, intensity, cosmic)